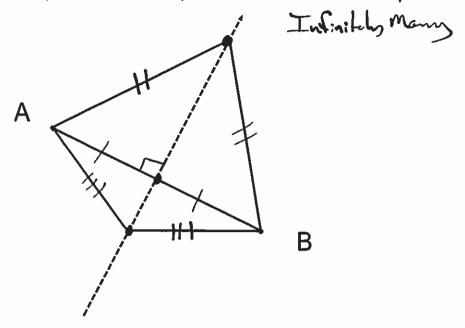
Geometry: Please clear your desk except for...

1. Assignments up to #35

Define: Median and Altitude.

How many Medians and Altitudes does each triangle have? Which of these two segments must be inside the triangle? (Draw examples to justify your answer!)

Intro to Section 4.7


Equidistant from two points:

Distance from a point to a line:

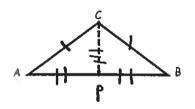
Equidistant from two lines:

How many points are equidistant from two points?

This leads us to two Theorems:

- 1. If a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.
- 2. If a point is equidistant from the endpoints of a segment, then the points lies on the perpendicular bisector of the segment.

Geometry 4.7-Medians, Altitudes, and Perpendicular Bisectors 2015-Key.not@leceknber 11, 2015


If a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.

Given: \overline{CP} is the \bot bisector of AB	
Prove: CA = CB	A HIP H
$\frac{\text{Statements}}{1 \overline{CP} \text{ is the } \bot \text{ bisector of } AB}$	Reasons Given
2 Pisthemidal of AB, CP I AB	Def. of \(\perceq\) bisector
3 CD = CD	Refl. Prop. of ≅
$\frac{4}{AP} = \frac{1}{PB}$	Def. of midpoint
5 4= 12	⊥ lines form ≅ adj. ∠s
6 DAPC = DBPC	SAS ≅ Post.
7 CA = CB	CPCTC
8	Def. of ≈ 505.

Given: CA = CB

Prove: C is on the \perp bisector of \overline{AB}

Key Idea: Draw an auxiliary line (CP).

Triangles are Congruent by:

Option 1: (P is an altitude of AACB

HL = Thom

Option 2: (P is the 1 bisedon of LACB

SAS = Post

[Evy L has a biscotur] Option 3: CP is a mudian of AALB

555 = Post

SEms synthe and B

Geometry 4.7-Medians, Altitudes, and Perpendicular Bisectors 2015-Key.not@leaeknber 11, 2015

If a point is equidistant from the endpoints of a segment, then the points lies on the perpendicular bisector of the segment.

Given: CA = CB	c
Prove: C is on the \perp bisector of AB	
Statements	Reasons P
1 CA = CB	Given
2 Draw CP 1 AB	1 Post
3 TP= TP	Refl. Proport =
4 CA = CB	Def. of 2 Sea
5 △ACP ≅ △BCP	1/L ≥ Thon
$6 \overline{AP} \cong \overline{BP}$	CPCTC
7 Pistle midplot AB	Def. of molet
8 C is on the \perp bisector of AB	Def. of 1 bisector
9	

Perpendicular Bisector Theorem:

A point lies on the perpendicular bisector of a segment if and only if the point is equidistant from the endpoints of the segment.